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• Oral presentations are limited to contributions on the 
following topics.

- "Fuzzy Math" - Why aren't our models good enough yet? 

- "Hogging the Limelight" - What are we learning about 
PIG and the rest of the Amundsen Sea Embayment? 

- "Hey, Over Here!" - What are we missing by focusing on 
the Amundsen Sea and why should we care? 

- "Working on the Chain Gang" - What are the critical 
linkages that drive the behavior of the ice sheet? 

- "Lost at Sea" - What have we been missing all these years 
by ignoring the ice shelves?



• The five focus questions that were posed generated a lot of 
excellent submissions, however, there was so much cross 
linking of information between these topics that I 
abandoned them in structuring the agenda.  

• Instead, the agenda is organized by the topics: ice shelves 
and ocean; grounding lines; basal conditions; and ice sheets.  

• Within each topic the talks start with observations and end 
with models.  My intention with this structure is to help 
reveal if the measurements and models are supporting each 
other.  A plenary discussion is included at the end of each 
topic to address this subject.
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The Full Momentum 
Solver

• The holy grail of ice sheet modeling.

• In principle, 

- conservation of momentum, 

- coupled with a flow law, 

• can provide a differential equation solvable 
for velocities at every point within the ice 
sheet volume.



The shallow-ice 
approximation

• neglects all but the basal drag 

• and is useful for slow-moving inland ice.



The shallow-ice 
approximation

● Only stress allowed is the basal drag.

● Stress assumed to be linear with depth.

● Vertical velocity profile from integrated strain rate.

● Quasi-2D, with Z integrated out.

● One degree of freedom per node.

● Good for interior ice sheet and where longitudinal stresses 
can be neglected.

● Probably not very good for ice streams. 



The Morland-MacAyeal 
equations

• neglect all but the longitudinal stresses 

• and are useful for ice shelves 

• and perhaps, in limited circumstances, ice 
streams.



The Morland-MacAyeal 
equations

● A modification of the Morland Equations for an ice shelf 
pioneered by MacAyeal and Hulbe.

● Quasi-2D model (plug flow in X and Y, with Z integrated out).

● Three degrees of freedom (Ux, Uy, and h) vs one (h).

● Addition of friction term violates assumptions of the Morland 
derivation.

● Requires specification as to where ice stream occurs.



• These approximations take advantage of the 
different scales of the horizontal versus the 
vertical dimensions of the ice sheet, 

• and involve an integration and removal of 
the vertical coordinate. 

• Both of these approximations have severe 
limitations, especially in the dynamically 
critical ice streams that drain most of the 
mass out of Antarctica. 

• The key interaction of shelf and inland ice, 
though the ice stream, cannot be adequately 
captured with either of these "end-member" 
approximations. 



• A full-momentum solver that 

- neglects no stresses and 

- makes no assumptions or vertical 
integrations 

• should give us the best and most accurate 
model for ice streams. 



The computational requirements for such a 
model are not reasonable for a whole-ice 
sheet simulation, and hence we have pursued 
the embedded-grid approach, whereby a 
shallow-ice model is run for the whole ice 
sheet, and the full-momentum solver is 
applied only to a sub-region where ice 
stream dynamics are known to be 
important. 



• As such there are three different types of 
boundary conditions that must be specified,

- the top, the bottom, and the sides. 

• The top is easy, a free-boundary is easily 
specified. 

- Simply no constraits. 

• The sides and bottom are more difficult. 



• On the sides we have a choice of boundary 
condition type. Either:

- Dirichlet: specified boundary velocities 
(the unknowns, or degrees of freedom in 
the full-momentum solver)

- Neumann: specified pressures or surface 
tractions (the source of momentum). 



• From the shallow-ice model in which the full 
momentum solver is embedded, we can 
provide both of these conditions,  

- although for Dirichlet, the vertical 
variation in velocity is only of lower order.

(Numerical integration of linearly varying driving 
stress through the temperature-dependent flow law) 



• For Neumann, pressures are not difficult to 
specify (a simple function of depth).

• However, conservation of angular 
momentum 

(net rotational torque must be zero), 

• does require specification of some surface 
traction 

(the "dynamical stresses"), 

• and this can be problematic.  

















Net torque zero



• Specification of the bottom boundary is 
more difficult, due to the poorly understood 
nature of sliding.

(hard rock, deformable sediments, polythermal ice, basal 
water, etc.). 

• A frozen bed is easy, a simple Dirichlet BC 
with all velocities specified at zero. 

• A completely uncoupled bed is also easy, 
with a simple free BC in the two horizontal 
dimensions. 

(In ALL of these cases the vertical velocity is specified to 
be zero, although it could be the basal melt/freeze rate)



• With Neumann boundary conditions, we can 
specify the basal traction. 

• If this is specified to be equal to the driving 
stress 

(rho*g*h*alpha), 

• we obtain the same solution that we get 
when we specify no sliding 

(Dirichlet, all velocities zero).



• In reality, the basal stress should be less than 
the driving stress, with some portion taken 
up by side shear and longitudinal stresses.

• We have tried specifying a given fraction of 
the driving stress, but this leads to unrealistic 
oscillations in the ice sheet profile. 

• A uniform stress works well, but there is no 
indication that this is a reasonable 
assumption, nor does this deal well with the 
transition from inland to streaming to shelf.



• Both of these also require "yet-another-
parameter," and hence are undesirable. 

• A third approach involves a " deformable" 
basal layer, (a thin layer of elements, the 
order of meters thick, which is much softer. 

• With this approach, one can preserve the 
easy-to-implement Dirichlet boundary 
conditions of all basal velocities specified at 
zero, and still obtain high sliding velocities, 
and plug-like flow.



• The dilemma is of course the requirement of 
a "parameter" (how soft and how thick is 
this layer?)

• Tuning such a model (and remember, this is 
how the parameters in most sliding laws are 
obtained, by tuning) would involve 
comparison of measured and modeled 
velocity fields in well-documented areas 
such as the Siple Coast, and soon the 
Amundsen Sector.



THANK YOU



• Supplemental material



Einstein Notation

● The convention is that any 
repeated subscript implies a 
summation over its appropriate 
range. 

● A comma implies partial 
differentiation with respect to 
the appropriate coordinate. 



The Full Momentum Equation

● Conservation of Momentum: 
Balance of Forces

● Flow Law, relating stress and 
strain rates.

● Effective viscosity, a function of 
the strain invariant.



The Full Momentum Equation

● The strain invariant.

● Strain rates and velocity 
gradients.

● The differential equation from 
combining the conservation law 
and the flow law.



The Full Momentum Equation

● FEM converts differential 
equation to matrix equation. 

● Kmn as integral of strain rate 
term.

● Shape functions as linear FEM 
interpolating functions.



The Full Momentum Equation

● Elimination of pressure degree 
of freedom by Penalty Method.

● K'mn as integral of the pressure 
term.

● Load vector, RHS, as integral of 
the body force term.



[vi{δijP + µ(ui,j + uj,i)}],j =
vi,j{δijP + µ(ui,j + uj,i)} + vi{δijP + µ(ui,j + uj,i)},j

(viδijP ),j = vi,jδijP = vi,iP
∫∫∫

Ω
{vi,iP + vi,jµ(ui,j + uj,i)} dV =
∫∫∫

Ω
viρfi dV +

∫∫∫

Ω
vi{δijP + µ(ui,j + uj,i)},j dV

∫∫∫

Ω
{vi,iP + vi,jµ(ui,j + uj,i)} dV =

−
∫∫∫

Ω
viρfi dV +

∫∫

δΩ
viσNi dA

σNi = {δijP + µ(ui,j + uj,i)}N


